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Poly(ethylene glycol)-supported a,a,a-trifluoroacetophenone in
dioxirane mediated alkene epoxidation reactions
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Abstract—Poly(ethylene glycol) (PEG) was used for the immobilization of a,a,a-trifluoroacetophenone and the utility of this sup-
ported ketone has been examined in dioxirane mediated epoxidation of alkenes. The PEG-ketone reagent was found to be an effec-
tive homogeneous catalyst for the epoxidation of a variety of alkenes in the presence of Oxone� and was readily recovered from the
reaction mixtures and reused.
� 2004 Elsevier Ltd. All rights reserved.
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The use of small organic molecules to catalyze reactions
in what is known as organocatalysis is a rapidly expand-
ing field of research.1 Some of the most useful such com-
pounds for this type of catalysis are amines, such as
amino acids and their derivatives2,3 and naturally occur-
ring alkaloids.4 These catalysts have been found to be
effective in Baylis–Hillman,5 Strecker,6 and anhydride
desymmetrization7 reactions. Another class of useful
organic catalysts are dioxirane compounds, derived
from the oxidation of ketones with Oxone� (2KHSO5–
KHSO4–K2SO7), that are effective oxidants in alkene
epoxidation reactions.8,9

Our long-standing interest in the development of new pol-
ymer supports10,11 and the attachment of amine,12 phos-
phine,13 sulfide14 and sulfoxide15 reagents to these
polymers led us to investigate the attachment of such a
ketone organic catalyst to a polymer support in order to
simplify its recovery and reuse.16 There have been several
previous reports regarding attachment of ketones to var-
ious polymeric supports and their use in dioxirane-medi-
ated alkene epoxidation reactions, including attachment
of a methyl ketone to polystyrene,17 a trifluoromethyl
ketone attached to both polystyrene and Tentagel�,18

and both an achiral trifluoromethyl ketone19,20 and a
chiral fluoro ketone21 immobilized on silica.

These prior reports used insoluble supports that ren-
dered the reagents attached to them heterogeneous.
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Due to this, incomplete coupling of the ketone to the
support was observed in some cases and in all cases, pro-
longed reaction times were required for reactions to be
completed, as compared to reactions using small mole-
cule ketone catalysts. As a result these reagents have
not yet found wide use in organic synthesis. In order
to overcome these issues and to prepare what might be
a more broadly useful reagent, we chose to use poly(eth-
ylene glycol) (PEG),22,23 a polymer that is soluble in
both water and organic solvents such as 1,4-dioxane
and THF, as the support for a,a,a-trifluoroacetophe-
none.

For attachment of the ketone to PEG via an ether link-
age, phenol 1 was prepared from 4-bromophenol in
three steps (Scheme 1). Initial protection of the phenol
Scheme 1. Reactions and conditions: (a) TBDMSCl, Imidazole, DMF,

0 �C to rt, 100%; (b) Mg, THF, N-trifluoroacetylpiperidine, rt, 56%;

(c) TBAF, THF, rt, 90%; (d) CsCO3, Bu4NI, MPEG-OMs, DMF,

65�C, 90%.
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Table 2. Alkene epoxidation catalyzed by recycled ketone 2

O

AcO AcO

Cycle Yield (%)

1 84

2 82

3 84

4 81

5 85
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group as a silyl ether was followed by reaction with mag-
nesium to form the corresponding Grignard reagent.
This reagent was reacted with N-trifluoroacetylpi-
peridine24 to introduce the trifluoromethyl ketone
group. Finally, removal of the silyl ether group afforded
phenol 1.25 Reaction of 1 with MPEG-OMs26

(MPEG=poly(ethylene glycol) monomethyl ether, aver-
age MW=5000) in the presence of CsCO3 and Bu4NI
afforded supported catalyst 2.27

The epoxidation of a variety of alkenes using catalyst 2
was examined (Table 1). In these reactions, ketone 2 was
converted in situ to the corresponding dioxirane by Ox-
one� in water/dioxane at room temperature. It should
be noted that these reactions were all quite efficient
and the complete disappearance of the alkene required
less than 5min, according to TLC analysis, when only
0.1equiv of 2 was used.28,29 The yields listed in Table
1 represent purified isolated products.30 In most cases,
the epoxide was the sole product formed (according to
TLC analysis) and the less than quantitative yields are
a result of product loss during the workup and purifica-
Table 1. Alkene epoxidation catalyzed by ketone 2 in the presence of
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tion processes. Both styrene derivatives (Table 1, entries
1–10) and alkyl substituted alkenes (Table 1, entries 11
and 12) were good substrates.

Once the utility of 2 was established, the reaction repre-
sented by Table 1, entry 6 was used to determine if 2
recovered at the end of the reactions31 could be reused.
As can be seen in Table 2, a single sample of catalyst 2
can be effectively reused at least five times with essen-
tially no decrease in isolated product yield.32

In summary, we have prepared for the first time, a solu-
ble polymer-supported trifluoromethyl ketone that is an
effective catalyst in dioxirane mediated alkene epoxida-
tion reactions and that is approximately as efficient as
is the analogous small molecule ketone, a,a,a-trifluoro-
acetophenone.18,33,34 Due to its solubility, 2 functions as
a homogeneous catalyst and, therefore, allows for much
shorter reaction times and comparable yields compared
to other previously reported insoluble polymer-sup-
ported fluorinated ketone catalysts and thus it should
be a useful new tool in the synthetic chemistry toolbox.
Along this line, it is interesting to note that in the syn-
thesis of epothilones by Ley and coworkers in which
all steps were carried out using polymer-supported rea-
gents, the final conversion of epothilone C to epoxide
containing epothilone A was not performed, presumably
due to the lack of an available supported epoxidation
catalyst.35 Perhaps if a reagent such as 2 had been avail-
able at that time, the complete synthesis of epothilone A
using polymer-supported reagents in every step would
have been possible.
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